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Spring 2022 Einstein Gravity in a Nutshell How Things Work

1632: Galileo

We could probably start a discussion of Einstein’s Gravity, also known as General
Relativity, in Ancient Greece with some of the folks there who were thinking about
geometry, math and philosophy. But Galileo’s observations really set up the contrast
between classical ways of thinking about space and time and how Einstein thought
about them.

In 1632, Galileo wrote in his Dialogue Concerning the Two Chief World Systems, the
following passage:

Shut yourself up with some friend in the main cabin below decks on some
large ship, and have with you there some flies, butterflies, and other small
flying animals. Have a large bowl of water with some fish in it; hang up a
bottle that empties drop by drop into a wide vessel beneath it. With the
ship standing still, observe carefully how the little animals fly with equal
speed to all sides of the cabin. The fish swim indifferently in all direc-
tions; the drops fall into the vessel beneath; and, in throwing something
to your friend, you need throw it no more strongly in one direction than
another, the distances being equal; jumping with your feet together, you
pass equal spaces in every direction. When you have observed all these
things carefully (though doubtless when the ship is standing still every-
thing must happen in this way), have the ship proceed with any speed you
like, so long as the motion is uniform and not fluctuating this way and
that. You will discover not the least change in all the effects named, nor
could you tell from any of them whether the ship was moving or standing
still. In jumping, you will pass on the floor the same spaces as before,
nor will you make larger jumps toward the stern than toward the prow
even though the ship is moving quite rapidly, despite the fact that during
the time that you are in the air the floor you will be going in a direction
opposite to your jump. In throwing something to your companion, you
will need no more force to get it to him whether he is in the direction of
the bow or the stern, with yourself situated opposite. The droplets will
fall as before into the vessel beneath without dropping toward the stern,
although while the drops are in the air the ship runs many spans. The
fish in their water will swim toward the front of their bowl with no more
effort than toward the back, and will go with equal ease to bait placed
anywhere around the edges of the bowl. Finally the butterflies and flies
will continue their flights indifferently toward every side, nor will it ever
happen that they are concentrated toward the stern, as if tired out from
keeping up with the course of the ship, from which they will have been
separated during long intervals by keeping themselves in the air. And if
smoke is made by burning some incense, it will be seen going up in the
form of a little cloud, remaining still and moving no more toward one side
than the other. The cause of all of these correspondences of effects is the
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fact that the ship’s motion is common to all the things contained in it,
and to the air also. That is why I said you should be below decks; for if
this took place above in the open air, which would not follow the course
of the ship, more or less noticeable differences would be seen in some of
the effects noted.

How observant! It’s this kind of insight that set the whole story of relativity in mo-
tion. And although these kinds of things might seem sort of obvious today, they
weren’t way back in 1632. For Galileo, he was occupied with the relative movement
of things (e.g. the floor and you jumping).

What he asserted was basically this: if you're in a car going 60 mph and you throw
a ball forward going 5 mph, you (the person traveling along with the car) will see it
going 5 mph. However, your friend sitting on the side of the road will see it going
with the speed of the car plus the speed that you threw it with, 65 mph. It must be
going faster! See Figure 1.

1687: Newton

Around 1687 Isaac Newton figured out that the force of gravity between two objects
(really two masses, see Figure 2) is given by,
Fp = S, (1)
r
where the m, and msy are the two object masses, r is the distance between them, and
G is the gravitational constant. Sometimes people just call this “Big G,” and it’s one
of the fundamental constants of nature. Big G is equal to 6.67 x 10~'" N /kg?m?.

Newton’s law of gravitation basically says that the force of gravity between two ob-
jects is strongest when the masses are big and close together. Newton’s gravity
predicts a ton of stuff incredibly welll We figured out how pretty much all the plan-
ets and stars move with it. But from the beginning Newton knew something was

Figure 1
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Figure 2

Figure 3

wrong with it, or at least that he hadn’t explained everything. He said, “It is in-
conceivable that inanimate matter should, without the mediation of something else,
which is not material, operate upon and affect other matter without mutual contact.”

What Newton is saying is that he doesn’t understand how the gravitational force
works at a fundamental level. His equation describes things well, but he doesn’t
know why. Imagine this: you have two bowling balls near each other. Newton’s law
of gravitation says that there is a gravitational attraction between them. You go and
slap a blob of clay onto one of the bowling balls. The force of gravity between the
two bowling balls got bigger. But how did the one of the balls know that you took
the clay, moved it, and stuck it to the other ball? Newton didn’t know.

As years went by we started to figure out more things were wrong with Newton’s
law of gravitation, perhaps the most famous of which was Mercury’s Perihelion Shift
(see Figure 3). Basically, when planets orbit the sun, they do so in ellipses (kind
of flattened circles). Perihelion is the point when the planet is closest to the sun.
It turns out that when planets are orbiting the sun, the point at which they reach
perihelion slowly rotates. For the most part, Newton predicts this (in fact, this is
essentially how we discovered Neptune; we saw that Uranus was orbiting in a way
that needed another planet nearby for its orbit to make sense, and that planet was
Neptune!).

The reason for this is Mercury is being pulled on by the sun, but also by all the other
planets. These smaller pulls cause the perihelion rotation. However, astronomers
eventually realized that no matter how detailed their calculations, they couldn’t get
the prediction for Mercury’s rate of perihelion shift quite right. We accounted for
everything, but we were still about 43 arc seconds (.012 degrees) of movement off per
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year (yes that’s a very small amount, but people have been staring at the sky for
centuries so our data was super accurate).

1862: Maxwell

Fast forward a couple hundred years, and James Clerk Maxwell pretty much solves
all of electromagnetism (without modern mathematics by the way!!!). He figured out
that all electric and magnetic fields are governed by just four equations:

ﬁ'E:4ﬂ'p V-B=0
. . 10B - - 1, - OE

Yes this looks complicated but they’re not too bad! First, the d symbol just means
“a little change in” something.” So OF means “a little change in the electric field.”
Then, V- means “divergence of.” Divergence has to do with how much a field spreads
out. This is in contrast to V x which is the “curl” and has to do with how much a
field... well... curls. If you know how much a field spreads out and curls, you know
all there is to know about it.

But don’t worry about all that. What’s important is that the top left equation means
that electric fields (F) are made by charges (that’s what the p is - electric charge).
The top right one means that magnets always have a north and south pole. If you
cut a magnet in half, it just becomes another smaller magnet. You can’t isolate the
north or south pole!

The bottom left and bottom right are a little more complicated looking, but their
interpretation is actually straightforward. The bottom left means that changing mag-
netic fields (B) produce electric fields (E), and the bottom right one means that
changing electric fields produce magnetic fields. So if nothing else is around, a chang-
ing E-field will start to generate a B-field, but then that B-field will start to generate
an F-field, which will generate a B-field, and so on and so forth. This alternation is
an electromagnetic wave, AKA light!!!

Maxwell’s equations determine that the speed of this wave (the speed of light!) is
equal to

c=3x 10° m/s, (3)
or about one foot per nanosecond. This is the universal speed limit. Nothing travels

faster than light.

But wait... Say you're traveling along in a car going 60 mph with a camera. You take
a picture and the flash goes off (see Figure 4). You see the light traveling at the speed
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Figure 4

of light ¢. But what does your friend standing outside the car see? Basic logic, and
all of physics up until the early 20th century, assumed that your friend would see the
light going at ¢ + 60 mph. Except that doesn’t agree with Maxwell!!! His equations
say that the speed of light is ¢, full stop. Period. End of story. So which is it? Does
your friend see the light going at ¢ or ¢ 4+ 60 mph?

This set up a major showdown in the history of physics, Galileo vs Maxwell.

A (Somewhat) Brief Digression on Geometry

I'll leave you with that clifthanger for a moment while we do a brief digression on
geometry, which will be useful in a minute.

Think way back to middle school geometry class for a moment. Chances are at some
point you saw the relation shown in Figure 5, called the Pythagorean Theorem. The
Pythagorean Theorem says that for a right triangle (a triangle where one of the angles
is 90 degrees), the sides are related by the equation

a’ + b = A2 (4)

I bet you never thought you’d ever see that again did you!?! So what does the
Pythagorean theorem really tell us? It’s really a measure of distance. It’s saying that
there are 2 ways of expressing the distance between the bottom left and top right

Figure 5
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Figure 6

points of the triangle (the points connected by the hypotenuse labeled ¢). On one
hand the distance is just ¢, but Pythagoras tells us that we can write ¢ as the square
root of a? + b2. Keep that in mind as we move forward.

What we're going to do now is write the Pythagorean Theorem that you know so
well in a very fancy way. So as we move along and weird Greek letters and crazy
symbols show up, just remember that at the heart of it all is just good ol’ Pythagoras.

First, the Pythagorean theorem doesn’t say anything about how big a, b, and ¢ are.
They could be huge, or they could be really, really small. Remember a couple sections
ago I said that the symbol 0 means “a small change.” In math, the letter d also means
“a small change” (maybe that’s unsurprising, the two look super similar). So if I drew
a really, really, infinitesimally small right triangle (as in Figure 6), I could write

ds® = da® + dy*. (5)

In fact, this relationship scales up to three dimensions too, as shown in Figure 7. In
2 dimensions, we wrote the distance between two points, ds, as ds?> = dz? 4 dy?. So
it’s only natural that in 3 dimensions we can write the distance between two points,
ds, as

ds* = dz* + dy* + d2°. (6)

However, in a sense, we arbitrarily labeled x, y, and z. In fact, there are lots of ways
to specify where things are. Consider Figure 8, which shows an arrow coming from
the origin (the point where the z and y axes cross). How can we label the point where
the arrow ends? Well we could say, just like in the Pythagorean theorem, that it’s a
certain distance along the x-axis then a certain distance up the y-axis. But we could
also label the end of the arrow using the coordinates r and 6 (the Greek letter theta),
which are written in blue. r would describe the length of the arrow, while 6 describes
how far the arrow is pivoted above the z-axis. Either set of coordinates gets us to the
same spot at the end of the arrow. And in fact we can switch back and forth between
the two labels via the relationship x = rcosf and y = rsin 6 (these are just the defi-
nitions of sine and cosine, but if you're not familiar with those, don’t worry about it!).
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Figure 10

Since we can write the location of the point (x,y) with the coordinates (r,0), we
should also be able to write a small change in distance using both coordinates. We
already know that ds? = dx? + dy?. But what about r and 67 Well, to traverse the
distance ds shown in Figure 10, we need to move out a little bit in the r direction, dr
(shown by one of the dotted lines). Then we need to connect back over to the other
end of the ds hypotenuse (shown by the other dotted line). How far is that distance?
At some point you might have learned that the length of an arc swept out by an angle
0 is given by 6 (shown in Figure 9). So for a really small angle, like the one in Figure
10, the length of the arc swept out is rdf. That is the length of the other leg of the
triangle formed by the dotted lines, with the hypotenuse being ds and the third leg
being dr.

Thus, just like we could write ds* = dx? + dy?, we could also write the distance ds as

ds® = dr® + r*df*. (7)

So even though ds is the same, the way we measured it is different. Indeed, this
whole discussion is a complicated way of saying that we can measure ds in a bunch
of ways, but no matter which one we use, we will always measure ds as having the
same length. This makes sense! In fact, it kind of has to be this way!!! It would be
weird if the length of ds changed. That would be kind of like the distance between
your house and the house down the street being different depending on the route you
take there. You went a different way, but the length of the street doesn’t change!

Now I'm going to write these expressions for ds in a fancy way that seems needlessly
complicated, but is actually quite useful! First, remember that anything multiplied
by zero is zero, and anything multiplied by one is itself. So I could write,

ds* = da® + dy* = 1(dx®) + 0(dzdy) + 0(dydx) + 1(dy?) (8)
All T did there was put a 1 in front of the parts of the Pythagorean Theorem and a

8
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zero in front of two other terms that are multiplying dz and dy together. Now, I'm
going to introduce something called a matriz. A matrix is just a collection of numbers
inside some brackets:

Joo 9o1
L, = 9
I [910 911} (9)

So what does this mean? Well first off, g, is just the name of the matrix (the thing
on the right side of the equals sign). p is the Greek letter “mu” and v is the Greek
letter “nu.” Those Greek letters are just placeholders for numbers that indicate which
number in the matrix we're talking about. So for instance, if p =0 and v = 1, I'm
specifically referring to go;, the top right number in the matrix. So say I had,

G = E ;} . (10)

Then I could say for y =0 and v =0, g, = goo = 4. Similarly, for y =0 and v =1,
Guw = gor = 7. Then g1p = 9 and g1 = 3. Not so bad right? All the matrix and
the Greek letters are doing is providing a convenient way to package together four
numbers. I could write down matrices of other shapes too. What about:

dv, = Bﬁ‘j . (11)

For p = 0, we're referring to the number dxy and for p = 1, we're referring to the
number dz;. Note that the Greek letter I'm choosing to use doesn’t matter here. I
can use A (lambda) and write dzy or v (gamma) and write dz,. The Greek is, for
the most part, just a placeholder! It only serves a purpose when we write something
like this:

Gudz,dx,. (12)

When you see the Greek letters repeated like this (see how the p appears twice
and the v appears twice), we need to do some adding. Specifically, we take all the
combinations of y and v (i.e., u=0and v =0, u=0and v =1, p =1 and v = 0,
p=1and v =1) and add them up:

Gudx,dr, = goodrodry + gordrodry + grodridrg + gridriday (13)

But remember that all of these are just numbers, so dxodzy = d:v% and dzdx, = da?,
so this becomes,

guydl’“dl‘y = goodl'g + gmdxodxl + glodl'ldl’o + gndxf (14)

Aha! Look!!! Glance back to equation 8 and compare to this. If gog = 1, go1 = 0,
gio = 0, and g1; = 1, and then we let dxrqg = dr and dx; = dy, these two equations
are exactly the samel!!! Writing it all out this way, we have

ds® = dz* + dy* = g,,dz,dx, (15)
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Figure 11
for the specific case that
10
and
dx
dr, = [d?j : (17)

So where does that leave us? Well, we’ve basically just written the Pythagorean
theorem in a really, really complicated way (namely, ds* = g, dz,dz,). Why would we
do such a thing??? Good question. Well first off, this way of writing the Pythagorean
theorem is super general. If we know other ways of writing ds?, they all look the
same when written this way. For instance, remember that we said ds? also equals
dr® 4+ r2d6?%. If we let goo = 1, go1 = gio = 0 and g11 = r? and then let dzg = dr and
dx1 = df, we have

1 0| |dr| |dr
2 _ _ 32 202
ds* = g, dz,dx, = {O TQ} [d&} Lw} = dr® + r<df (18)
If we know what to put in the different matrix slots, we can always write the
Pythagorean theorem this way. Another reason for using this complicated looking
way of writing ds? is that it is very compact. Imagine if we wrote out the Pythagorean
theorem in three dimensions like we did earlier:

1 0 0| |dx]| |dx
ds* = gudz,dr, = [0 1 0| |dy| |dy| = da* + dy® + d2? (19)
0 0 1f (dz]| |d=z

The expression ds? = dz? + dy? + dz? doesn’t look too bad. But imagine if the ¢
matrix weren’t full of zeroes. Or if g were 4 by 4 instead of 3 by 3 or 2 by 2. There
would be a lot of terms in the Pythagorean theorem! And physicists are lazy, so we
avoid writing at all costs. Even the expression for the Pythagorean theorem in three

10
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dimensions using a different set of coordinates (r, 6, ¢), shown in Figure 11, is a lot
to write:

1 0 0 dr | |dr
ds* = gudw,dr, = [0 12 0 do| |do| = dr*+r*df* + r*sin® §dg” (20)
0 0 7r2sin?d| |do| |do

Ok. We're finally done. We’ve built up all the notation that we need to gain some
insight into what Einstein did in his work. Even if you didn’t really get everything
that we just did, here are the main takeaways from this section:

e The Pythagorean Theorem is telling you about the distance between two points
(the length of the long side of the triangle)

e The distance ds? that the Pythagorean theorem tells you about is the same
regardless of the coordinates you use to tell where the triangle is (As it should
be! It wouldn’t make sense otherwise!)

® g, is basically a fancy way of writing the Pythagorean theorem. Thus, the
matrix g encodes information about distances between points

Lastly, some vocabulary. It turns out that g,, is quite important (otherwise I wouldn’t
have spent so much time talking about it), and has its own name. It’s called the
metric tensor.

Einstein!

Einstein’s Special Theory of Relativity

Back to the story. When we last left our heroes, there was an epic showdown between
the ideas of Galileo and Maxwell over how to add velocities, like whether someone
would see a higher speed of light if you drove by in a car and turned on a flashlight.
In 1905 Einstein was quite concerned with this debate (among other things - Einstein
did a lot of physics). One of the things that Einstein figured out in his Special
Theory of Relativity was that Mazwell was right, not Galileo. The speed of light
is constant no matter what. The person on the side of the road measures the speed
of light as ¢ and the person in the car measures the speed of light as ¢. No matter
what, ¢ = ¢. So what are the consequences of Einstein’s assertion that the speed of
light be constant for all observers?

Perhaps the quickest way to see one of the most significant consequences of a constant
speed of light is through a thought experiment that Einstein himself came up with.
Imagine that you want to build a clock using light. How might you do that? Well,
you could put a device together like in Figure 12a). What that image shows is two
mirrors (the black lines), separated by a distance L. If you shined a beam of light
up from the bottom mirror (shown in blue), the light would go up, bounce off the

11
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Figure 12

top mirror, and come down. Since we know the speed of light is ¢, and the distance
it traverses in one up-and-down motion is 2L, then the time the light took to go up
and down must be At = 2L/c. This is just reorganizing the speed equals distance
over time equation that we learned on the first day of class. So someone sitting there
looking at this fancy clock knows how much time has passed for each “tick” (up-and-
down motion) of the light (At =2L/c)!

Now consider the following. The image in Figure 12a) is what the clock would look
like for someone sitting still next to the clock. But what if the person picked up the
clock and started running down the street with it? Well, that person is moving along
with the clock, so it still looks the same. For the running clock carrier, each tick still
takes At = 2L/c. However, things look a bit different for someone sitting off to the
side watching the clock move by. This is shown in Figure 12b). The light still goes
up and down, but as it’s doing so, the whole clock is moving to the right. Thus, it
looks like the light has to travel at an angle to stay moving with the clock.

For Galileo, this isn’t a big deal. But for Einstein, this is a huge deal!!l! Why? Be-
cause for the person watching the clock move by, they think the light has to travel a
larger distance in one tick than does the person running along with the clock! But if
the speed of light is the same for everyone, that means the light will have to traverse
a longer distance, and one tick will therefore take more time!

So what does this mean? For a person sitting still, they think that the person running
has a clock that is ticking too slowly. To be clear: this isn’t just an illusion or a trick.
One immediate prediction of Einstein’s special relativity is that if you are moving,
time moves more slowly for you. This is called time dilation and it is a very real
phenomenon. We’ve verified it experimentally over and over! In one rather famous
test, physicists synchronized two clocks and sent one up in an airplane to fly around
the Earth for awhile. Sure enough, the one moving started to lag behind the one

12
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sitting on the surface of the Earth. However, this effect is very small unless you're
moving very, very fast. The difference in the times between the clock in the plane
and on the Earth was only a couple hundred nanoseconds. To see major time dilation
effects, one would need to be traveling close to the speed of light. We don’t ever
move that fast, but many small particles reach those speeds routinely. In those cases,
we observe that particles that should decay quickly actually “live” longer than they
should because time is moving more slowly for them! In addition to the time dilation
effect, special relativity also predicts length contraction, where the moving person
thinks things are shorter than they really are. These two effects already show that
some weird stuff is going on due to Einstein’s idea that the speed of light is constant
for all observers!

Now, since we spent so much time talking about the Pythagorean theorem and geom-
etry, we're actually only a hop skip and a jump away from connecting to Einstein’s
general theory of relativity, which is where he really did some crazy physics.

Let’s go back to that clock for a moment and do some math. Suppose that the person
running with the clock is running with a speed u. And since we already know that
the person watching the clock go by is going to measure a different tick time than
the person running with the clock, let’s label the person watching the clock’s tick
by At' to differentiate it from At, the tick of the person running with the clock.
Looking back at Figure 12b), we can use the Pythagorean Theorem to write down
the distance traveled by the light in one tick. The bottom of the triangle is half the
distance traveled by the running person, namely uAt'/2. It will be useful to simply
label this distance Axz’/2 - the distance they ran to the right according to the person
sitting off to the side watching them run. The height of the triangle is just the distance
between the mirrors, L. And since the light travels at speed ¢, the hypotenuse (the
distance the light travels) is given by multiplying ¢ by At’ and dividing by 2 (since
it’s only half the tick - the “up” part). Putting this all into the Pythagorean theorem,
we have the equality

cAt = 24/ (A’ /2)2 + L2 (21)
Squaring both sides and subtracting the (Az’)? term from both sides gives

(cAt')? — (Az')? = 4L, (22)

But wait! We saw earlier that for the person running alongside the clock, At = 2L/c.
Thus, 4L% = (cAt)?, meaning that

(cA)? — (Az')? = (cAt)?. (23)

This is starting to look familiar... Let’s do one more thing. It may seem weird to
do, but it is completely legal to add zero to a number. 2 + 0 is still equal to 2. So
if I add or subtract a bunch of stuff to both sides of the previous equation that’s all
equal to zero, then both sides are still equivalent. Moreover, note that for the person

13
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running alongside the clock, the clock isn’t moving, so for that person the change in
the clock’s position Az is zero. Similarly, that person doesn’t think the clock moved
up or down or side to side, so Ay = Az = 0 too. Meanwhile, we already said that
for the person on the side of the road watching the clock go by, the clock’s position
changes by Az’ = uAt', but it doesn’t move in either of the other directions. So
Ay’ = Az = 0. Thus, we can add or subtract all the stuff equal to zero and get:

(cAt)? — (Ax')* — (Ay')* — (AZ)" = (cAt)” — (Az)? — (Ay)* — (A2)*.  (24)

What does this mean? Well, it means that the expressions (cAt')? — (Ax')? — (Ay')? —
(A2)? and (cAt)? — (Az)? — (Ay)? — (Az)? are the same for all observers moving
relative to each other. We call quantities like this invariant. So the quantity (cAt)? —
(Ar)? — (Ay)? — (Az)? is the same for all observers, and it looks really familiar - very
much like all the geometric expressions and Pythagorean theorem things we looked
at earlier. In fact, they are deeply related. Hermann Minkowski asserted that

ds* = (cdt)® — (dz)?* — (dy)* — (dz)? (25)

is the distance (just like Pythagorean theorem!) between spacetime points. Not just
space, but spacetime - Minkowski put time and space on equal footing. And just like
how changing coordinates in the Pythagorean theorem didn’t change ds?, the relative
motion between observers doesn’t change ds? here. This insight was the basis of being
able to describe space and time together as one.

Since this expression looks a lot like the ones we saw earlier, let’s write

1 0 0 0 cdt| |cdt
ds® = g,,dv,dr, = 8 _01 _01 8 Z:; ?Z = (cdt)? — da* — dy* — dz* (26)

0 0 0 -1 dz dz

This particular form of the metric tensor g,, is special because it describes our local
spacetime, and so it gets a special name: the Minkowski Metric.

Einstein’s equivalence

Now for one last topic before we talk about the General Theory of Relativity: Ein-
stein’s equivalence principle. Einstein’s equivalence principle basically says that you
can’t tell the difference between the two scenarios shown in Figure 13. On the left,
someone is sitting in a spaceship that is stationary on Earth and drops a ball. They
see it fall with acceleration equal to g, the acceleration due to gravity (not like the g,
matrix from earlier). On the right, someone standing in a spaceship that is in deep
space accelerating up at g and drops a ball. The ball still looks like it moves down
with acceleration g to the person in the spaceship! Similarly, if you're in free-fall, you
can’t tell if you're in a region of no gravity or not. Astronauts train for zero-gravity

14
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Figure 13

missions on the moon by flying in an airplane and letting it fall down back to Earth
- freely falling like this feels the same to them as when they’re out in space with no
gravity. So free falling in gravity “feels” like there’s no force on you at all.

Einstein took these simple but profound observations and combined them with a bit
of Newton’s insight from hundreds of years earlier. Remember Newton’s First Law
says that if you're not experiencing a force, then you're moving at a constant velocity
in a straight line. Since falling in gravity “feels” like there’s no force on you, Einstein
essentially extended this to posit that moving in gravity is the same as moving on a
“straight line,” but in a curved spacetime (such a line is called a geodesic). And he
was right.

What does this look like? Perhaps the best visual is to think of a bowling ball on a
trampoline. The bowling ball makes the fabric around it curve, and if you were to
drop a marble on the outside of the trampoline, it would travel toward bowling ball.
If you gave it some speed, it would orbit around the bowling ball before falling in. If
you gave it just the right speed, it would orbit for quite awhile. This is just like the
moon and the Earth, or the sun and the planets. The planets are merely traveling
on “straight lines” in the spacetime that has been curved by the sun’s mass. This

was the mechanism for gravity that Newton wanted to understand hundreds of years
before!

Einstein’s General Theory of Relativity

So Einstein had the right idea. But he needed to come up with a brand new way of
thinking about how gravity works based on the curvature of spacetime. And that’s
hard. Because you're talking about curved spacetime, you're talking about doing
geometry in 4 dimensions where stuff is... well... curvy, and things generally don’t
work the same as you’d expect.

But at the core of it all is the metric tensor!!!. In fact, the final result of
working on General Relativity for 10 years (his special theory of relativity came out
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in 1905, the general theory came in 1915) was the Einstein tensor, G,,. He found
a set of equations, called Einstein’s Equations, given by

G = 81GT,,, (27)

where G is regular old Newton’s gravitational constant and 7}, is called the stress-
energy tensor, which describes the amount of mass and energy. So what this equation
says is that curvature (the Einstein tensor) is equal to the stuff in the spacetime (the
stress-energy tensor). Gravity is geometry!

As it turns out, the Einstein tensor is a (very messy) function of the metric ten-
sor! This is perhaps unsurprising, since the Einstein tensor describes the curvature
of spacetime, and the metric is all about encoding distances in spacetime. So how
does one calculate the Einstein tensor? Well, that’s a little beyond the scope of
these notes. That would require many more pages. But I can write out the steps to
show you how the metric tensor plays such a central role, and to give you an idea
of how in-depth the overall process is and why it took Einstein 10 years to figure it out.

Given a metric tensor g, ...

1. Calculate the Christoffel Symbols:

1
FZV = égp)\<augv>\ + 61/9#/\ - 8>\gul/>

2. Calculate the Riemann Curvature Tensor:

R, =007, +T7. ) — 0.1, +T7,.1,)

puv pEs vp VKT pp
3. Then the Ricci tensor:

Ry, = R,ZUV = 9" Rrppw
4. And the Ricci scalar:
R=g¢"R,,

5. From which we (finally) get the Einstein tensor:
1
Gul/ = Ruu - §Rguu

So we went all the way from the metric tensor g,, all the way up through the Ein-
stein tensor, G,,. See all the places that the metric shows up in these equations?
It’s important! And at its core it’s really just kind of like the Pythagorean Theorem
that you learned so long ago! Now, if G\, = 87GT),,, then we've got a solution to
Einstein’s equations and we can describe how stuff moves in that spacetime around
a particular mass!
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But what solutions are there? This was actually a source of disappointment for Ein-
stein. He figured that his equations were so complex that a solution would be basically
impossible to find. Enter an individual with one of the most interesting backstories
in the history of physics, Karl Schwarzschild. Schwarzschild was a German soldier in
World War I who also happened to do physics. In 1916, mere months after Einstein
first published his General Theory of Relativity, Schwarzschild was laid up in the hos-
pital after being injured in the war. While there, he figured out the first solution to
Einstein’s equations. Yes, a WWI soldier in the hospital solved Einstein’s Equations.
Schwarzschild wrote a letter to Einstein that said, “As you can see, the war treated
me kindly enough, in spite of the heavy gunfire, to get away from it all and take a
walk in the land of your ideas.” Wow.

So what was Schwarzschild’s solution? He found that the metric

2GM 1
2 [+ 2
ds® = (1 . )dt +—(1—2GM/7“)

satisfied Einstein’s equations. Don’t worry about the details, I'll point out some of
the important parts. This metric was supposed to describe the gravity outside a
spherically symmetric body of mass M such as a star or planet. And it indeed does
that. In fact, it fixed the discrepancy in predictions of Mercury’s perihelion shift, one
of the first confirmations that Einstein’s new theory was correct.

dr® + r*d? + r? sin® Od¢’* (28)

Another consequence of Einstein’s gravity is that since gravity is a curvature of space-
time, it also affects light even though light is massless. Einstein predicts that light
also travels along in curved spacetime and gets affected by a massive object’s gravity.
This is actually one of the methods that we use to detect exoplanets. When they
pass in front of stars, even if we can’t see the exoplanet, we can see that it’s bending
the star’s light. This effect is called Gravitational Lensing.

Looking at the metric, note that it appears something weird happens at r = 2GM (r
is the distance from the spherically symmetric body). When r = 2GM, the bottom
of the fraction in front of the dr? goes to zero. But that seems like a problem, since
dividing by zero is impossible! So what’s going on there? Turns out that value is the
event horizon of a black hole. Schwarzschild’s metric implies the existence of black
holes, which are extremely massive objects that have gravity that is strong enough
to pull in light. The event horizon is the radius at which light will always travel to
the center of the black hole - the light can’t move fast enough to escape its pull. You
might notice that at » = 0 there are also several fractions that are divided by zero
in Schwarzschild’s metric. This is a genuine singularity, and we don’t know exactly
what’s going on here. We need more sophisticated physics that has yet to be invented
in order to say more.

Another effect predicted by Einstein’s gravity is the gravitational redshift. Just as

SR predicted that moving fast would slow down time around you, GR predicts that
being in the presence of a massive body also slows down time. If you've ever seen
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Figure 14

the movie Interstellar with Matthew McConaughey, there’s a scene where they end
up on a new planet and someone tells him that an hour on that planet is equivalent
to years on Earth because of the planet’s gravity. That’s a real effect (assuming one
could get to such a planet)!

Lastly, I’ll mention one of the most recent verifications of Einstein’s General Theory
of Relativity, the detection of gravitational waves. Einstein’s theory predicts that
massive objects like black holes moving through spacetime cause ripples in it, kind
of like a boat through water. These waves are super small, and travel at the speed
of light. Their amplitudes are measured in “strain” (depicted in Figure 14), which
is defined as the fractional change in displacement between two nearby masses due
to a gravitational wave (see in the image how the blue mass shifts away from the
black mass in the middle). The strain depicted in the image would be equal to Ad/d.
For context, the strain of the gravitational waves detected several years ago by LIGO
(read about LIGO in your workbook!) was about 1072°, which is incredibly small.
And those waves were due to the collision of two black holes!
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